Rolf Ade

See a simple example on the right

Except for media data, all files are
XML documents

The format is “Office Open XML,
specified by ECMA-376 and
ISO/IEC 29500

Prior art: ooxml for .xlsx by
Alexander Schope

— [Content_Types].xml

— docProps

| F— app.xml

| L— core.xml

F— _rels

| L— .rels

— word
— document.xml
— fontTable.xml
F— _rels
| L— document.xml.rels
— settings.xml

L— styles.xml

Still the default document format of MS Word up to 365

Libreoffice also reads and writes it very well

The specification defines “consumers” and “producers”

MS Word and libreoffice are both, consumers and producers
The library presented here is just a producer

WordprocessingXML is more like a translation of a binary format into XML
than a well-designed markup language

Create a docx object command:
set docx [docx new]

Add content top down

Write the thing with:
$docx write MyDocumment.docx

The basic methods to create content are:
paragraph

append

image

table

textbox

= Auxiliary methods are:

comment
footer

jumpto
pagebreak
sectionend
simp lecomment
tablecell
writepart

configure
header

mark
pagesetup
sectionstart
simpletable
tablerow

field
import
numbering
readpart
settings
style

url

Every method expects (after a few mandatory arguments in some cases)
optional option value pairs

Often, the value of an option has to be in key value format
Unknown options are reported together with the list of the known options

In case of key value options, unknown keys are reported together with the
list of known keys

In case of enumeration as value in a key value pair, unknown values are
reported together with the list of the allowed values

The stack trace points directly to the user code line

Text is added in paragraphs

Headings and listing points are just special formatted paragraphs

If a part of a paragraph has to be formatted differently use the method
append to append to the current paragraph with other formatting values

Then append the rest of the paragraph

$mydocx paragraph “Lorem impsum “
$mydocx append “important” -bold yes
$mydocx append $restOfTheParagraph

= Same advice as for users of the gui interfaces

= There are styles for paragraphs, ranges of characters, (numbered or bullet
point) listings and tables

= With listings, you have no choice but to format them with styles. For
paragraphs, text and tables it is most certainly advisable

= Styles may be created from scratch

= Some simple facilities to import styles from other .docx files are available

Footnotestendnotes

Bullet points from custom images

Just kidding

Documentation (repeating larger parts of the 1500 pages of the standard?)
Field testing

Developer documentation

Higher-level scripted markup on the base of this WordprocessingML
primitives.

Images always need options for both width and height

Higher-level styles import
More fine grain document settings control.

A libreoffice extension to put placeholders into a docx documents given, that
are replaced with content while generated (template style of
generating .docx)

The tDOM *fromScript feature provides a mighty and convenient pattern.

It is not easy to write a scripted library that’'s “behaving nicely”, with helpful
error messages and stack traces

While catch and return -code error $msg helps in case of basic needs (at the
cost of more ugly code) more problems arise due to script arguments
(evaluated arguments).

| want my Tcl even more lisp-ish

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12

