

Create .docx with Tcl

Rolf Ade

A .docx is just a zip archive

● See a simple example on the right

● Except for media data, all files are
XML documents

● The format is “Office Open XML”,
specified by ECMA-376 and
ISO/IEC 29500

● Prior art: ooxml for .xlsx by
Alexander Schöpe

.

├── [Content_Types].xml

├── docProps

│ ├── app.xml

│ └── core.xml

├── _rels

│ └── .rels

└── word

 ├── document.xml

 ├── fontTable.xml

 ├── _rels

 │ └── document.xml.rels

 ├── settings.xml

 └── styles.xml

 Still the default document format of MS Word up to 365

 Libreoffice also reads and writes it very well

 The specification defines “consumers” and “producers”

 MS Word and libreoffice are both, consumers and producers

 The library presented here is just a producer

 WordprocessingXML is more like a translation of a binary format into XML
than a well-designed markup language

WordprocessingML

 Create a docx object command:
set docx [docx new]

 Add content top down

 Write the thing with:
$docx write MyDocumment.docx

 The basic methods to create content are:
paragraph
append
image
table
textbox

Create a .docx

 Auxiliary methods are:

comment configure field
footer header import
jumpto mark numbering
pagebreak pagesetup readpart
sectionend sectionstart settings
simplecomment simpletable style
tablecell tablerow url
writepart

Create a .docx II

 Every method expects (after a few mandatory arguments in some cases)
optional option value pairs

 Often, the value of an option has to be in key value format

 Unknown options are reported together with the list of the known options

 In case of key value options, unknown keys are reported together with the
list of known keys

 In case of enumeration as value in a key value pair, unknown values are
reported together with the list of the allowed values

 The stack trace points directly to the user code line

Fine control

 Text is added in paragraphs

 Headings and listing points are just special formatted paragraphs

 If a part of a paragraph has to be formatted differently use the method
append to append to the current paragraph with other formatting values

 Then append the rest of the paragraph

$mydocx paragraph “Lorem impsum “
$mydocx append “important” -bold yes
$mydocx append $restOfTheParagraph

Text and Formatting

 Same advice as for users of the gui interfaces

 There are styles for paragraphs, ranges of characters, (numbered or bullet
point) listings and tables

 With listings, you have no choice but to format them with styles. For
paragraphs, text and tables it is most certainly advisable

 Styles may be created from scratch

 Some simple facilities to import styles from other .docx files are available

Use Styles

 Footnotes/endnotes

 Bullet points from custom images

 Just kidding

 Documentation (repeating larger parts of the 1500 pages of the standard?)

 Field testing

 Developer documentation

 Higher-level scripted markup on the base of this WordprocessingML
primitives.

So, what is missing?

 Images always need options for both width and height

 Higher-level styles import

 More fine grain document settings control.

 A libreoffice extension to put placeholders into a docx documents given, that
are replaced with content while generated (template style of
generating .docx)

So, what is missing, continued

 The tDOM *fromScript feature provides a mighty and convenient pattern.

 It is not easy to write a scripted library that’s “behaving nicely”, with helpful
error messages and stack traces

 While catch and return -code error $msg helps in case of basic needs (at the
cost of more ugly code) more problems arise due to script arguments
(evaluated arguments).

 I want my Tcl even more lisp-ish

Lessons

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12

