

A RAG implementation for
OpenACS

Antonio Pisano

This will NOT be an AI talk...

● ...but rather a talk about integrating an AI tool in an OpenACS
application.

● Still, I will say a few words on what RAG is

RAG in a nutshell

Large Language Model

● A computing model to simulate conversation
● Good at translating, paraphrasing and integrating texts
● Trained on a very large dataset
● It embeds some actual knowledge, but will also make up stuff
● Can be instructed via prompts to make answers more relevant or

specific

Information Retrieval system

● Creates an index from a corpus of documents
● Compares a user query with documents in the index and retrieves

the most relevant
● In classical IR, relevance is defined by some distance metric

computed using Natural Language Processing techniques

LLM + IR = Retrieval Augmented Generation

● The combination of an LLM and an IR system
● The query is first used to extract relevant context from a

document corpus
● The query and the context are combined into a prompt
● The prompt is used to elicit a relevant and accurate response

from the LLM

(Optional) Semantic Information Retrieval

● Some language models are able to compute semantic vector
representations of a document, or embeddings

● An information retrieval system can use vector distance over
embeddings as a distance metric to provide semantically relevant
results

● Although not mandatory for RAG, semantic retrieval can increase
the relevance of the augmented context

Some considerations

RAG vs LLM fine tuning

● Fine tuning an LLM is
– Computing-intensive
– Tricky → the final result will not necessarily be a better model for our

purpose

● RAG is
– Cheap The LLM is just a drop-in component→
– Easier to control By controlling the context we feed to the model via our →

prompt, we can normally expect responses to be accurate and relevant to
the query

Why would I need my own RAG system?

● Many LLM applications on the market are already some form of
RAG, which normally has access to the whole Internet

● A custom RAG application makes sense when your corpus:
– is very specific
– is very authoritative
– is not available on the Internet
– is proprietary or privacy-sensitive

Ingredients of a RAG system on OpenACS

Ollama

● Open source tool to run Large Language Models locally and on
consumer hardware

● Extensive library of models ready to download, including:
– Meta Llama
– Microsoft Phi
– Alibaba Qwen
– Deepseek
– … and various embedding models

● ChatGPT-compatible web API

OpenACS search

● Information Retrieval implementation
● Packages implementing the Full Text Search Service Contract

provide callbacks to convert their objects into text representations
● The actual indexing happens via “drivers” implemented for Oracle

and Postgres
● On Postgres, current driver uses the DBMS full text search

capabilities

OpenACS search (2)

● Examples of packages supporting search are:
– File Storage
– XoWiki-based packages
– Forums

● The drivers enforce access control only documents we can see →
will be retrieved

OpenACS search (3)

https://openacs.org/search/

pgvector

● Postgres module to store and retrieve vector data types
● Implements indexing and distance queries on vector spaces
● Can be used to store and retrieve embeddings produced by

embedding models

Implementation

Wrapping the Ollama API

● The ollama API is simple and is made to resemble OpenAI
● Generated responses are typically returned via a stream

– Gustaf Neumann introduced streaming HTTP proxy functionality for ns_http
in NaviServer 5.0 release

– Previous implementation used tcl http package streaming functionality as a
workaround

Implementing a new search driver

● Content segmentation
– Computing the embeddings works best on smaller content (~1000 words)
– The single documents are segmented in chunks that are indexed separately
– The chunks overlap slightly to avoid truncating sentences
– We trust the LLM to tolerate the noise due to this naive segmentation

Tcl (pronounced "tickle" or "TCL";[8] originally Tool Command Language) is a
high-level, general-purpose, interpreted, dynamic programming language. It
was designed with the goal of being very simple but powerful.[9] Tcl casts
everything into the mold of a command, even programming constructs like

variable assignment and procedure definition.[10] Tcl supports multiple
programming paradigms, including object-oriented, imperative, functional, and

procedural styles.
It is commonly used embedded into C applications,[11] for rapid prototyping,
scripted applications, GUIs, and testing.[12] Tcl interpreters are available for

many operating systems, allowing Tcl code to run on a wide variety of systems.
Because Tcl is a very compact language, it is used on embedded systems

platforms, both in its full form and in several other small-footprint versions.[13]
The popular combination of Tcl with the Tk extension is referred to as Tcl/Tk

(pronounced "tickle teak"[citation needed] or "tickle TK") and enables building a
graphical user interface (GUI) natively in Tcl. Tcl/Tk is included in the standard

Python installation in the form of Tkinter.

Tcl (pronounced "tickle" or "TCL";[8] originally Tool Command
Language) is a high-level, general-purpose, interpreted, dynamic

programming language. It was designed with the goal of being very
simple but powerful.[9] Tcl casts everything into the mold of a

command, even programming constructs like variable assignment
and procedure definition.[10] Tcl supports multiple programming
paradigms, including object-oriented, imperative, functional, and

procedural styles.

programming paradigms, including object-oriented, imperative,
functional, and procedural styles.

It is commonly used embedded into C applications,[11] for rapid
prototyping, scripted applications, GUIs, and testing.[12] Tcl

interpreters are available for many operating systems, allowing Tcl
code to run on a wide variety of systems. Because Tcl is a very

compact language, it is used on embedded systems platforms, both
in its full form and in several other small-footprint versions.[13]

The popular combination of Tcl with the Tk extension is referred to
as Tcl/Tk

Document

Document segments

Because Tcl is a very compact language, it is used on embedded
systems platforms, both in its full form and in several other small-

footprint versions.[13]
The popular combination of Tcl with the Tk extension is referred to
as Tcl/Tk (pronounced "tickle teak"[citation needed] or "tickle TK")

and enables building a graphical user interface (GUI) natively in Tcl.
Tcl/Tk is included in the standard Python installation in the form of

Tkinter.

Implementing a new search driver (2)

● Embedding index
– Ollama used as a backend to compute content embeddings
– The embeddings are computed in batches to reduce request overhead
– pgvector Postgres extension used for storage and retrieval

Packages as knowledge base

● Our RAG package can be instantiated multiple times
● Under any such instance, subnodes mounting searchable

packages are treated as “knowledge base”
● The RAG package instance will use results from this packages to

provide replies

Server-Sent Events Notifications

● Indexing of documents must be asynchronous
– Big documents = many chunks = multiple HTTP requests
– Generating the embeddings is an intensive operation
– Waiting time in the order of tens of seconds (or more)

● A new SSE delivery backend has been implemented for OpenACS
– An SSE channel is open on every page (when new backend is enabled)
– OpenACS notifications the user subscribed to are broadcast on the channel

as JSON messages, produced via tDOM
– The client renders the notifications via the Notification web API

A little tour of the final product

Conversation UI: a reply without access to the context

Conversations list and knowledge base

SSE notifications

Conversation UI: a reply with RAG

Conversation UI: clicking on the reported context display the segment contents

Settings: various parameters can be customized

Settings (2): various parameters can be customized

Streaming response in action

Acknowledgments

● The RAG workflow implemented in this project is similar in
principle to that in Open WEBUI (https://docs.openwebui.com/)

● Many thanks to Gustaf Neumann as always for quickly addressing
my needs for new NaviServer features :-)

https://docs.openwebui.com/

Thanks for watching!

● My contacts
– antonio@elettrotecnica.it
– https://github.com/Elettrotecnica

● Links
– https://openacs.org/
– https://ollama.com/
– https://github.com/pgvector/pgvector
– https://github.com/Elettrotecnica/openacs-ollama

mailto:antonio@elettrotecnica.it
https://github.com/Elettrotecnica
https://openacs.org/
https://ollama.com/
https://github.com/pgvector/pgvector
https://github.com/Elettrotecnica/openacs-ollama

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

