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This will NOT be an AI talk...

● ...but rather a talk about integrating an AI tool in an OpenACS 
application.

● Still, I will say a few words on what RAG is



  

RAG in a nutshell



  

Large Language Model

● A computing model to simulate conversation
● Good at translating, paraphrasing and integrating texts
● Trained on a very large dataset
● It embeds some actual knowledge, but will also make up stuff
● Can be instructed via prompts to make answers more relevant or 

specific



  

Information Retrieval system

● Creates an index from a corpus of documents
● Compares a user query with documents in the index and retrieves 

the most relevant
● In classical IR, relevance is defined by some distance metric 

computed using Natural Language Processing techniques



  

LLM + IR = Retrieval Augmented Generation

● The combination of an LLM and an IR system
● The query is first used to extract relevant context from a 

document corpus
● The query and the context are combined into a prompt
● The prompt is used to elicit a relevant and accurate response 

from the LLM



  

(Optional) Semantic Information Retrieval

● Some language models are able to compute semantic vector 
representations of a document, or embeddings

● An information retrieval system can use vector distance over 
embeddings as a distance metric to provide semantically relevant 
results

● Although not mandatory for RAG, semantic retrieval can increase 
the relevance of the augmented context



  



  

Some considerations



  

RAG vs LLM fine tuning

● Fine tuning an LLM is
– Computing-intensive
– Tricky → the final result will not necessarily be a better model for our 

purpose

● RAG is
– Cheap  The LLM is just a drop-in component→
– Easier to control  By controlling the context we feed to the model via our →

prompt, we can normally expect responses to be accurate and relevant to 
the query



  

Why would I need my own RAG system?

● Many LLM applications on the market are already some form of 
RAG, which normally has access to the whole Internet

● A custom RAG application makes sense when your corpus:
– is very specific
– is very authoritative
– is not available on the Internet
– is proprietary or privacy-sensitive



  

Ingredients of a RAG system on OpenACS



  

Ollama

● Open source tool to run Large Language Models locally and on 
consumer hardware

● Extensive library of models ready to download, including:
– Meta Llama
– Microsoft Phi
– Alibaba Qwen
– Deepseek
– … and various embedding models

● ChatGPT-compatible web API



  

OpenACS search

● Information Retrieval implementation
● Packages implementing the Full Text Search Service Contract 

provide callbacks to convert their objects into text representations
● The actual indexing happens via “drivers” implemented for Oracle 

and Postgres
● On Postgres, current driver uses the DBMS full text search 

capabilities



  

OpenACS search (2)

● Examples of packages supporting search are:
– File Storage
– XoWiki-based packages
– Forums

● The drivers enforce access control  only documents we can  see →
will be retrieved



  

OpenACS search (3)

https://openacs.org/search/



  

pgvector

● Postgres module to store and retrieve vector data types
● Implements indexing and distance queries on vector spaces
● Can be used to store and retrieve embeddings produced by 

embedding models



  

Implementation



  

Wrapping the Ollama API

● The ollama API is simple and is made to resemble OpenAI
● Generated responses are typically returned via a stream

– Gustaf Neumann introduced streaming HTTP proxy functionality for ns_http 
in NaviServer 5.0 release

– Previous implementation used tcl http package streaming functionality as a 
workaround



  

Implementing a new search driver

● Content segmentation
– Computing the embeddings works best on smaller content (~1000 words)
– The single documents are segmented in chunks that are indexed separately
– The chunks overlap slightly to avoid truncating sentences
– We trust the LLM to tolerate the noise due to this naive segmentation



  

Tcl (pronounced "tickle" or "TCL";[8] originally Tool Command Language) is a 
high-level, general-purpose, interpreted, dynamic programming language. It 
was designed with the goal of being very simple but powerful.[9] Tcl casts 
everything into the mold of a command, even programming constructs like 

variable assignment and procedure definition.[10] Tcl supports multiple 
programming paradigms, including object-oriented, imperative, functional, and 

procedural styles.
It is commonly used embedded into C applications,[11] for rapid prototyping, 
scripted applications, GUIs, and testing.[12] Tcl interpreters are available for 

many operating systems, allowing Tcl code to run on a wide variety of systems. 
Because Tcl is a very compact language, it is used on embedded systems 

platforms, both in its full form and in several other small-footprint versions.[13]
The popular combination of Tcl with the Tk extension is referred to as Tcl/Tk 

(pronounced "tickle teak"[citation needed] or "tickle TK") and enables building a 
graphical user interface (GUI) natively in Tcl. Tcl/Tk is included in the standard 

Python installation in the form of Tkinter.
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Implementing a new search driver (2)

● Embedding index
– Ollama used as a backend to compute content embeddings
– The embeddings are computed in batches to reduce request overhead
– pgvector Postgres extension used for storage and retrieval



  



  

Packages as knowledge base

● Our RAG package can be instantiated multiple times
● Under any such instance, subnodes mounting searchable 

packages are treated as “knowledge base”
● The RAG package instance will use results from this packages to 

provide replies



  

Server-Sent Events Notifications

● Indexing of documents must be asynchronous
– Big documents = many chunks = multiple HTTP requests
– Generating the embeddings is an intensive operation
– Waiting time in the order of tens of seconds (or more)

● A new SSE delivery backend has been implemented for OpenACS
– An SSE channel is open on every page (when new backend is enabled)
– OpenACS notifications the user subscribed to are broadcast on the channel 

as JSON messages, produced via tDOM
– The client renders the notifications via the Notification web API



  

A little tour of the final product



  

Conversation UI: a reply without access to the context



  

Conversations list and knowledge base



  

SSE notifications



  

Conversation UI: a reply with RAG



  

Conversation UI: clicking on the reported context display the segment contents



  

Settings: various parameters can be customized



  

Settings (2): various parameters can be customized



  

Streaming response in action
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Thanks for watching!

● My contacts
– antonio@elettrotecnica.it
– https://github.com/Elettrotecnica

● Links
– https://openacs.org/
– https://ollama.com/
– https://github.com/pgvector/pgvector
– https://github.com/Elettrotecnica/openacs-ollama
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