
NaviServer 5.0 (Release)

OpenACS and EuroTcl 2025

Univ.-Prof. Dr. Gustaf Neumann

Vienna University of Economics and Business
Information Systems and New Media

JULY  10, 2025



▪ NaviServer 5 is released

▪ Has the world waited for it?

▪ Was it necessary?

▪ NaviServer 4.99.1 … 4.99.31

v3.0: 2000, v4.0: 2001, v4.99: 2005

▪ Many Changes …

▪ Most extensive NaviServer release of the last 25 years

522 files changed, 78K insertions, 33K deletions

Changelog: 18K lines

▪ Some architectural changes

▪ Many new features (some previews already presented last year)

▪ … such as:

▪ Tcl9 support

▪ Many security enhancements

▪ Improved scalability, flexibility, and configurability

▪ Substantial cleanup

▪ Code

▪ Documentation

▪ New HTML Design
PAGE 2

Overview

  



Security Enhancements

▪ Security enhancements

▪ Security by default, esp. peer certificate validation

▪ Bundled CA certificates and fine-grained validation policies

▪ Pluggable authorization framework

▪ Context Constraints

▪ Many cryptographic improvements, e.g. 

▪ Argon2 password hashing, SCRAM-sha-256, …

▪ Passing certificates as file and/or strings

▪ …

▪ Other key features

▪ Optionally case insensitive sets

▪ Generalized logdir/serverdir handling (mass virtual hosting)

▪ Reverse/forward proxy in core (with UNIX socket and streaming support)

▪ Responsive start page UI with dark mode support

▪ Extended Env-variable-based config (Docker/Kubernetes-ready)

▪ New commands for developer (ns_parsehtml, ns_percentencode, ns_joinurl, …)

▪ Extended introspection: ns_conn details, ns_conn urldict, ns_server hosts, …

▪ Revived TclPro debugger



Extending the power of ns_sets (1/2)

▪ What are ns_sets

▪ NaviServer data structure for developers 

▪ Technically multimap (a dict is a map)

▪ ns_sets have names, provide automated 
garbage collection, … 

▪ Used in NaviServer e.g. for

▪ HTTP header fields 

▪ Configuration values

▪ SQL tuples

▪ …

▪ New Features in NaviServer 5

▪ Case insensitivity (major uses are per definition case-insensitive)

▪ Reading statistics (e.g., was a configuration parameter read? Is this the default?)

▪ Performance improvements: Improved locality and CPU cache hit rate, less locks

set h [ns_set create headers]

ns_set put $h Set-Cookie a=1

ns_set put $h Set-Cookie b=2

ns_set put $h Content-type text/plain



Extending the power of ns_sets (2/2)

▪ NaviServer 4.99

▪ Some sets are per definition 
case-insensitive

▪ Case-insensitivity developer 
burden

▪ 7 commands starting with “i”

▪ Error prone, when omitting “i”, 
-> Multiple errors in OpenACS and NaviServer

▪ NaviServer 5

Some sets default case-insensitive

▪ HTTP header fields 

▪ Configuration values

▪ SQL tuples

▪ New sets can be defined insensitive with “-nocase flag)

▪ Performance impact: key comparison ~20x faster

set h [ns_conn headers]

set ct [ns_set iget $h Content-Type]

ns_set iupdate $h Content-Length 0

ns_set get $h User-Agent    ;# ERROR

set h [ns_conn headers]

set ct [ns_set get $h Content-Type]

ns_set update $h Content-Length 0

ns_set get $h User-Agent    ;# OK

set h [ns_set create foo -nocase]

ns_set update –nocase $x foo bar



0 10 20 30 40 50 60

time

r0

r1 r2

driver

c1

writer

c2

Handling Concurrent Requests in  
NaviServer

▪ Requests: r0 (t0), r1 (t5), r2 (t30)

▪ Spooling Threads: driver, writer shared for many requests

One spooling thread can handle multiple (hundreds, thousand concurrent connections)

▪ Connection Threads: c1, c2, .... exclusive per request

Only orange parts are actually executed in the connection threads

▪ By the use of spooling threads 

▪ r0 uses 5 instead of 40 time-units in connection threads (total instead 9 instead of 70 time-units)

▪ Throughput increased, NaviServer can make better use of multiple cores

▪ Spooling times depend on client, mitigation for slow write/slow read attacks

Requests



Processing Stages for a Single Request in 
NaviServer 4.99

Processing Stages

▪ NaviServer 4.99.*:

▪ Registration of multiple filters (preauth, postauth, trace) possible

▪ Registration of a single authorization handler

▪ OpenACS: 

▪ Not using NaviServer’s authorization handler, 

▪ handling all authorization in filter chains



Processing Stages for a Single Request in 
NaviServer 5

PAGE 8

Authorization chain

▪ NaviServer 5

▪ Support of multiple authorization handlers (authorization chain)

▪ Registration (below registration of Tcl authorization callback): 

ns_register_auth ?-authority /value/? ?-first? ?--? request|user /script/ ?/arg .../?

https://naviserver.sourceforge.io/5.0/naviserver/files/ns_register.html


Authorization Chain in NaviServer 5

PAGE 9

▪ 2 types of results:

▪ Signal continuation of processing flow (using TCL_OK, TCL_BREAK, TCL_RETURN)

▪ Result of authorization (function result)



Context Constraints for URL Tries

▪ URL Tries in NaviServer 4.99:

▪ Resolve on METHOD, path and pattern (only last part)

▪ Used for 
▪ Request handlers (ns_register_proc, ns_register_adp, ns_register_tcl, ...), 

▪ mapping of requests to pools

▪ ns_urlspace command, in modules like nscgi, nsperm

▪ Examples:

ns_urlspace set /*.foo x

ns_register_tcl GET /*.tcl

ns_register_cgi GET /cgi/*.php

▪ NaviServer 5:

▪ Resolve on METHOD, path, pattern and request context (Context constrains on IP, 
headers)

▪ Match inside path possible

▪ Context constrains can be used whenever URL Trie is used and for ns_register_filter

E.g. allow reverse proxy only for 127.208.0.0/16 requests

ns_register_proc –constraints {X-ns-ip 127.208.0.0/16} GET /admin/* { … }

ns_register_cgi -constraints {X-User *admin*} GET /admin/Panel/*



NaviServer as HTTP Client (1/4)

Certificate Management

▪ Use of external Web-Services nowadays increasingly important

▪ Security by default -> outgoing HTTPS request might fail 
-> handling of certification violations

  

Sysadmins

- Can define exception rules

- Can review rejected certificates 

for auditing and manual handling



NaviServer as HTTP Client (2/4)

Persistent Connecitons

▪ Persistent connections for client requests 

▪ NaviServer makes multiple requests to the same service

▪ Connection setup costs are high

▪ But also, using a single connection is not optimal

▪ NaviServer provides

▪ Depending on load multiple concurrent 
reusable connections

▪ Detailed statistics

ns_http …

ns_http …

ns_http …

Requests from same or different threads



NaviServer as HTTP Client (3/4)

Deployment Scenarios

▪ Using HTTP client-functionality for 

▪ Many applications, including now:

▪ Reverse proxy

▪ Forward proxy

▪ Make use of HTTP client infrastructure

▪ Built-in reverse proxy module with streaming & keep-alive

▪ CIDR-based upstream trust & X-Forwarded-For parsing 
(multiple options)

▪ Forward proxy supports HTTP CONNECT (TLS tunneling)

▪ Configurable via ns_http or ns_connchan

▪ Fully scriptable

▪ E.g. run authorization in NaviServer/OpenACS before forwarding 

request to upstream server

▪ Same NaviServer instance can act

▪ As reverse proxy for multiple backends

▪ As forward proxy

▪ As multiple web servers (mass virtual hosting)

Reverse Proxy setup

Forward Proxy setup

  



Substantial Rework of Command Documentaion

▪ NaviServer 4.99:

▪ Some commands were not documented

▪ Some options of commands were not documented

▪ Some options were documented, that did not exist

▪ Deprecated commands were used in examples in documentation

▪ Some commands/subcommands were not included in regression test

▪ Omissions on full-command-list overview in documentation

▪ NaviServer 5:

▪ Generated documentation (using Tcl doctools) is parsed into dicts

▪ Regression tests are parsed into dicts

▪ Source code (command registrations) are parsed into dicts

▪ Compare results -> fixed several hundred problems!

Tested commands not documented

------------> 728 tested commands, 91 deprecated,  655 documented, 0 NOT documented

Documented commands not tested

------------> 655 documented commands, 655 tested, 0 NOT tested

------------> 39 deprecated commands are tested

------------> 0 usage messages differ from doc, 655 are identical



NaviServer as HTTP Client (4/4)

Reponse Streaming

▪ Support for Streaming Client Response
processing requests in ns_http

▪ Two new callbacks:
-response_header_callback

-response_data_callback

Important for

▪ Streaming REST calls, where outputs are 
produced progressively (as used e.g. by 
generative AI)

▪ Improving performance and scalability of reverse 

proxy

July 8 reverse proxy for CVS browser on OpenACS.org:

- Up to 110 revproxy requests per second

- Time cap with 60s

- Avg time 293ms

- 98% reuse, about 0.5 mio requests on this day so far



▪ Uniform Design for NaviServer 5:

▪ Default start page, Documentation, nsstats (statistics + configuration management)

▪ CSS based, no external library dependency

PAGE 16

New Responsive Design with Dark Mode



Improved Configurability

PAGE 17

▪ ns_configure_variables

API for conveniently using environment variables in 
configuration files

▪ Motivation

▪ Often, configuration files differes only a little

▪ Useful for: 

▪ containers, when running e.g. multiple NaviServer 

instances

▪ systemd service files

▪ Containers are typically configured via 

environment variables

▪ Used in

▪ Sample configuration file for plain NaviServer 

▪ Sample configuration file for OpenACS



▪ NaviServer 5 

▪ Improved security

▪ Many new features

▪ Strong backward compatibility 

▪ Major cleanup of API and documentation

▪ 50 new and extended Tcl commands 

and subcommands. 

Average Code Age: 9.8 years

based on a line-per-line analysis,

e.g. 5.11% of the code base is 

unmodified since 2000

PAGE 18

Summary

... 2000 :  5.11%

... 2001 :  1.60%

... 2002 :  1.54%

... 2003 :  1.44%

... 2004 :  0.14%

... 2005 :  7.30%

... 2006 :  7.84%

... 2007 :  3.28%

... 2008 :  1.84%

... 2009 :  0.21%

... 2010 :  0.10%

... 2011 :  0.12%

... 2012 :  3.06%

... 2013 :  1.60%

... 2014 :  3.60%

... 2015 :  1.88%

... 2016 :  7.21%

... 2017 :  4.25%

... 2018 :  4.70%

... 2019 :  5.40%

... 2020 :  7.17%

... 2021 :  3.62%

... 2022 :  2.92%

... 2023 :  4.25%

... 2024 :  8.90%

... 2025 : 10.93%



Institute for Information Systems and 

New Media

Welthandelsplatz 1, 1020 Vienna, Austria

UNIV.PROF.  DR. Gustaf Neumann

T +43-1-313 36-4671

gustaf.neumann@wu.ac.at

www.wu.ac.at

PAGE 19


	Slide 1: NaviServer 5.0 (Release)
	Slide 2: Overview
	Slide 3: Security Enhancements 
	Slide 4: Extending the power of ns_sets (1/2)
	Slide 5: Extending the power of ns_sets (2/2)
	Slide 6: Handling Concurrent Requests in  NaviServer
	Slide 7: Processing Stages for a Single Request in NaviServer 4.99
	Slide 8: Processing Stages for a Single Request in NaviServer 5
	Slide 9: Authorization Chain in NaviServer 5
	Slide 10: Context Constraints for URL Tries
	Slide 11: NaviServer as HTTP Client (1/4) Certificate Management
	Slide 12: NaviServer as HTTP Client (2/4) Persistent Connecitons
	Slide 13: NaviServer as HTTP Client (3/4) Deployment Scenarios
	Slide 14: Substantial Rework of Command Documentaion
	Slide 15: NaviServer as HTTP Client (4/4) Reponse Streaming
	Slide 16: New Responsive Design with Dark Mode
	Slide 17: Improved Configurability
	Slide 18: Summary
	Slide 19:  

